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Module 3 : Analysis of Strain                    
 

3.1.1    INTRODUCTION                                       

o define normal strain, refer to the following Figure 3.1 where line AB of an axially 
loaded member has suffered deformation to become BA ¢¢ . 

 

 
 
                                                Figure 3.1 Axially loaded bar 
 
The length of AB is Dx.  As shown in Figure 3.1(b), points A and B have each been displaced, 

i.e., at point A an amount u, and at point B an amount u+ Du.  Point B has been displaced by 

an amount Du in addition to displacement of point A, and the length Dx has been increased 

by Du.  Now, normal strain may be defined as 

 
dx
du

x
u

xx =
D
D

=
®D 0

lime                                                (3.0) 

In view of the limiting process, the above represents the strain at a point.  Therefore "Strain 

is a measure of relative change in length, or change in shape".  

T 
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3.1.2    TYPES OF STRAIN  

Strain may be classified into direct and shear strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
 
 
 
 
 
 

Figure 3.2 Types of strains 

 

 

(a) 
(b) 

(c) (d) 
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Figure 3.2(a), 3.2(b), 3.2(c), 3.2(d) represent one-dimensional, two-dimensional,  
three-dimensional and shear strains respectively. 

In case of two-dimensional strain, two normal or longitudinal strains are given by 

ex =  
x
u
¶
¶

 ,     ey  = 
y
v
¶
¶

                                      (3.1) 

+ ve sign applies to elongation;  –ve sign, to contraction.    

Now, consider the change experienced by right angle DAB in the Figure 3.2 (d).  The total 

angular change of angle DAB between lines in the x and y directions, is defined as the 

shearing strain and denoted by gxy.  

\   gxy   = ax + ay =    
y
u
¶
¶

  +  
x
v
¶
¶

                 (3.2) 

The shear strain is positive when the right angle between two positive axes decreases 
otherwise the shear strain is negative. 

In case of a three-dimensional element, a prism with sides dx, dy, dz as shown in Figure 
3.2(c) the following are the normal and shearing strains: 

z
w

y
v

x
u

zyx ¶
¶

=
¶
¶

=
¶
¶

= eee ,,                  (3.3) 

z
u

x
w

y
w

z
v

x
v

y
u

zxyzxy ¶
¶

+
¶
¶

=
¶
¶

+
¶
¶

=
¶
¶

+
¶
¶

= ggg ,,  

The remaining components of shearing strain are similarly related: 

xzzxzyyzyxxy gggggg === ,,                             (3.4) 
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3.1.3    DEFORMATION OF AN INFINITESIMAL LINE ELEMENT 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3 Line element in undeformed and deformed body 

 

 

 

Figure 3.3 Line element in undeformed and deformed body 
 

Consider an infinitesimal line element PQ in the undeformed geometry of a medium as 

shown in the Figure 3.3. When the body undergoes deformation, the line element PQ passes 

into the line element QP ¢¢ . In general, both the length and the direction of PQ are changed. 

Let the co-ordinates of P and Q before deformation be ( ) ( )zzyyxxzyx D+D+D+ ,,,,,  
respectively and the displacement vector at point P have components (u, v, w). 

The co-ordinates of P, P¢ and Q are 

( )zyxP ,,:  

( )wzvyuxP +++¢ ,,:  
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( )zzyyxxQ D+D+D+ ,,:  

The displacement components at Q differ slightly from those at point P since Q is away 
from P by yx DD , and zD . 

\ The displacements at Q are 

vvuu D+D+ , and ww D+  

Now, if Q is very close to P, then to the first order approximation  

z
z
u

y
y
u

x
x
u

u D
¶
¶

+D
¶
¶

+D
¶
¶

=D          (a) 

Similarly, z
z
v

y
y
v

x
x
v

v D
¶
¶

+D
¶
¶

+D
¶
¶

=D       (b) 

And z
z
w

y
y
w

x
x
w

w D
¶
¶

+D
¶
¶

+D
¶
¶

=D         (c) 

The co-ordinates of Q¢ are, therefore, 

( )wwzzvvyyuuxxQ D++D+D++D+D++D+¢ ,,  

Before deformation, the segment PQ had components yx DD , and zD along the three axes. 

After deformation, the segment QP ¢¢  has components vyux +D+D , and wz +D  along the 

three axes. 

Here the terms like 
y
u

x
u

¶
¶

¶
¶

, and 
z
u
¶
¶

etc. are important in the analysis of strain. These are the 

gradients of the displacement components in x, y and z directions. These can be represented 
in the form of a matrix called the displacement-gradient matrix such as 

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

¶
¶

=
ú
ú
û

ù

ê
ê
ë

é

¶
¶
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w

y
w

x
w

z
v

y
v

x
v

z
u

y
u

x
u

x
u

j

i  
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3.1.4    CHANGE IN LENGTH OF A LINEAR ELEMENT 

When the body undergoes deformation, it causes a point P(x, y, z) in the body under 

consideration to be displaced to a new position P¢with co-ordinates ( )wzvyux +++ ,,  

where u, v and w are the displacement components. Also, a neighbouring point Q with co-

ordinates ( )zzyyxx D+D+D+ ,,  gets displaced to Q¢with new co-ordinates 

( )wwzzvvyyuuxx D++D+D++D+D++D+ ,, . 

Now, let SD be the length of the line element PQ with its components ( )zyx DDD ,, . 

( ) ( ) ( ) ( ) ( )22222 zyxPQS D+D+D==D\  

Similarly, S ¢D be the length QP ¢¢ with its components 

( )wzzvyyuxx D+D=¢DD+D=¢DD+D=¢D ,,  

( ) ( ) ( ) ( ) ( )22222 wzvyuxQPS D+D+D+D+D+D=¢¢=¢D\  

From equations (a), (b) and (c), 

z
z
u

y
y
u

x
x
u

x D
¶
¶

+D
¶
¶

+D÷
ø
ö

ç
è
æ

¶
¶

+=¢D 1   

z
z
v

y
y
v

x
x
v

y D
¶
¶

+D÷÷
ø

ö
çç
è

æ
¶
¶

++D
¶
¶

=¢D 1  

z
z
w

y
y
w

x
x
w

z D÷
ø
ö

ç
è
æ

¶
¶

++D
¶
¶

+D
¶
¶

=¢D 1  

Taking the difference between ( )2S ¢D and ( )2SD , we get  

( ) ( ) ( ) ( )2222 SSPQQP D-¢D=-¢¢    

( ) ( ) ( )( ) ( ) ( ) ( )( ){ }222222 zyxzyx D+D+D-¢D+¢D+¢D  

( )zxzyyxzyx zxyzxyzyx DD+DD+DD+D+D+D= eeeeee 2222             (3.5) 

where  

ú
ú
û

ù

ê
ê
ë

é
÷
ø
ö

ç
è
æ
¶
¶

+÷
ø
ö

ç
è
æ
¶
¶

+÷
ø
ö

ç
è
æ
¶
¶

+
¶
¶

=
222

2
1

x
w

x
v

x
u

x
u

xe               (3.5a) 
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¶

+÷÷
ø
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è

æ
¶
¶

+
¶
¶

=
222

2
1

y
w

y
v
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u

y
v

ye              (3.5b) 

ú
ú
û

ù

ê
ê
ë

é
÷
ø
ö

ç
è
æ
¶
¶

+÷
ø
ö

ç
è
æ
¶
¶

+÷
ø
ö

ç
è
æ
¶
¶

+
¶
¶

=
222

2
1

z
w

z
v

z
u

z
w

ze               (3.5c) 

ú
û

ù
ê
ë

é
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

+
¶
¶

==
y
w

x
w

y
v

x
v

y
u

x
u

y
u

x
v

yxxy ee             (3.5d) 

ú
û

ù
ê
ë

é
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

+
¶
¶

==
z
w

y
w

z
v

y
v

z
u

y
u

z
v

y
w

zyyz ee              (3.5e) 

úû
ù

êë
é

¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

+
¶
¶

==
x
w

z
w

x
v

z
v

x
u

z
u

x
w

z
u

xzzx ee              (3.5f) 

Now, introducing the notation 

S
SS

PQ D
D-¢D

=e   

which is called the relative extension of point P in the direction of point Q, now,  

( ) ( ) ( )
( )

( )2

2

222

22
S

S

SS
S

SSSS
D÷÷

ø

ö
çç
è

æ

D
D-¢D

+
D

D-¢D
=

D-¢D
 

                           ( ) ( )22

2
1

SPQPQ Dúû
ù

êë
é += ee  

                           ( )2

2
1

1 SPQPQ Dúû
ù

êë
é += ee  

From Equation (3.5), substituting for ( ) ( )22 SS D-¢D , we get 

( ) ( ) ( ) ( ) zxzyyxzyxS zxyzxyzyxPQPQ DD+DD+DD+D+D+D=D÷
ø
ö

ç
è
æ + eeeeeeee 2222

2
1

1  

If l, m, and n are the direction cosines of PQ, then  

S
z

n
S
y

m
S
x

l
D
D

=
D
D

=
D
D

= ,,  

Substituting these quantities in the above expression, 

nlmnlmnml zxyzxyzyxPQPQ eeeeeeee +++++=÷
ø
ö

ç
è
æ + 222

2
1

1  

The above equation gives the value of the relative displacement at point P in the direction 
PQ with direction cosines l, m and n. 
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3.1.5  CHANGE IN LENGTH OF A LINEAR ELEMENT-LINEAR  
               COMPONENTS 

 

It can be observed from the Equation (3.5a), (3.5b) and (3.5c) that they contain linear  

terms like .,,,, etc
z
w

y
v

x
u

----
¶
¶

¶
¶

¶
¶

as well as non-linear terms like 

.,.,
2

etc
y
u

x
u

x
u

----÷÷
ø

ö
çç
è

æ
¶
¶

¶
¶

÷
ø
ö

ç
è
æ
¶
¶

 If the deformation imposed on the body is small, the terms 

like etc,,
y
v

x
u
¶
¶

¶
¶

are extremely small so that their squares and products can be neglected. 

Hence retaining only linear terms, the linear strain at point P in the direction PQ can be 
obtained as below. 

z
w

y
v

x
u

zyx ¶
¶

=
¶
¶

=
¶
¶

= eee ,,                 (3.6) 

z
u

x
w

y
w

z
v

x
v

y
u

zxyzxy ¶
¶

+
¶
¶

=
¶
¶

+
¶
¶

=
¶
¶

+
¶
¶

= ggg ,,              (3.6a) 

and nlmnlmnml zxyzxyzyxPQPQ gggeeeee +++++=@ 222           (3.6b) 

If however, the line element is parallel to x axis, then l = 1, m = 0, n = 0 and the linear 
strain is 

x
u

xPQ ¶
¶

== ee  

Similarly, for element parallel to y axis, then l = 0, m = 1, n = 0 and the linear strain is 

y
v

yPQ ¶
¶

== ee  

and for element parallel to z axis, then l = 0, m = 0, n = 1 and the linear strain is 

z
w

zPQ ¶
¶

== ee  

The relations expressed by equations (3.6) and (3.6a) are known as the strain displacement 
relations of Cauchy. 
 
 
3.1.6    STRAIN TENSOR  

Just as the state of stress at a point is described by a nine-term array, the strain can be 
represented tensorially as below: 
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eij = ÷
÷
ø

ö
ç
ç
è

æ

¶

¶
+

¶
¶

i

j

j

i

x

u

x
u

2
1

          (i, j = x, y, z)                                     (3.7) 

The factor 1/2 in the above Equation (3.7) facilitates the representation of the strain 
transformation equations in indicial notation.  The longitudinal strains are obtained when  

i = j; the shearing strains are obtained when i ¹ j and jiij ee = .  

It is clear from the Equations (3.2) and (3.3) that 

exy = 
2
1 gxy  , eyz = 

2
1 gyz  , exz = 

2
1 gxz                                  (3.8) 

Therefore the strain tensor (eij = eji ) is given by 

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

=

zzyzx

yzyyx

xzxyx

ij

egg

geg

gge

e

2
1

2
1

2
1

2
1

2
1

2
1

                      (3.9) 

 
3.1.7    STRAIN TRANSFORMATION 

If the displacement components u, v and w at a point are represented in terms of known 

functions of x, y and z respectively in cartesian co-ordinates, then the six strain components 

can be determined by using the strain-displacement relations given below. 

z
w

y
v

x
u

zyx ¶
¶

=
¶
¶

=
¶
¶

= eee ,,  

y
w

z
v

x
v

y
u

yzxy ¶
¶

+
¶
¶

=
¶
¶

+
¶
¶

= gg ,  and 
z
u

x
w

zx ¶
¶

+
¶
¶

=g  

If at the same point, the strain components with reference to another set of co-ordinates axes 

yx ¢¢, and z¢ are desired, then they can be calculated using the concepts of axis 

transformation and the corresponding direction cosines. It is to be noted that the  
above equations are valid for any system of orthogonal co-ordinate axes irrespective  
of their orientations. 

Hence 
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z
w

y
v

x
u

zyx ¢¶
¶

=
¢¶

¶
=

¢¶
¶

= ¢¢¢ eee ,,  

z
u

x
w

y
w

z
v

x
v

y
u

xzzyyx ¢¶
¶

+
¢¶

¶
=

¢¶
¶

+
¢¶

¶
=

¢¶
¶

+
¢¶

¶
= ¢¢¢¢¢¢ ggg ,,  

Thus, the transformation of strains from one co-ordinate system to another can be written in 
matrix form as below: 
 

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

¢¢¢¢¢

¢¢¢¢¢

¢¢¢¢¢

zyzxz

zyyxy

zxyxx

egg

geg

gge

2
1

2
1

2
1

2
1

2
1

2
1

 

ú
ú
ú

û

ù

ê
ê
ê

ë

é
´

ú
ú
ú
ú
ú
ú

û

ù

ê
ê
ê
ê
ê
ê

ë

é

´
ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

321

321

321

333

222

111

2
1

2
1

2
1

2
1

2
1

2
1

nnn

mmm

lll

nml

nml

nml

zzyzx

yzyyx

xzxyx

egg

geg

gge

 

 

In general, [ ] [ ][ ][ ]Taa ee =¢  
 
3.1.8    SPHERICAL AND DEVIATORIAL STRAIN TENSORS 

Like the stress tensor, the strain tensor is also divided into two parts, the spherical and the 
deviatorial as, 

E  = E ¢¢  + E ¢  

where E ¢¢ =  

ú
ú
ú

û

ù

ê
ê
ê

ë

é

e

e

e

00

00

00

 = spherical strain                                      (3.10) 

 

E ¢  =
ú
ú
ú

û

ù

ê
ê
ê

ë

é

-
-

-

)(

)(

)(

e

e

e

zxyzx

yzyyx

xzxyx

eee
eee
eee

  = deviatorial strain                        (3.11)

  

and  e = 
3

zyx eee ++
 

It is noted that the spherical component E ¢¢  produces only volume changes without any 
change of shape while the deviatorial component E ¢  produces distortion or change of shape.   
These components are extensively used in theories of failure and are sometimes known as 
"dilatation" and "distortion" components. 
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3.1.9    PRINCIPAL STRAINS - STRAIN INVARIANTS 

During the discussion of the state of stress at a point, it was stated that at any point in a 
continuum there exists three mutually orthogonal planes, known as Principal planes, on 
which there are no shear stresses.  

Similar to that, planes exist on which there are no shear strains and only normal strains 

occur. These planes are termed as principal planes and the corresponding strains are  known 

as Principal strains. The Principal strains can be obtained by first determining the three 

mutually perpendicular directions along which the normal strains have stationary values. 

Hence, for this purpose, the normal strains given by Equation (3.6b) can be used. 

i.e.,  nlmnlmnml zxyzxyzyxPQ gggeeee +++++= 222  

As the values of l, m and n change, one can get different values for the strain PQe . 

Therefore, to find the maximum or minimum values of strain, we are required to equate 

nml
PQPQPQ

¶

¶

¶

¶

¶

¶ eee
,,  to zero, if l, m and n were all independent. But, one  of the direction 

cosines is not  independent, since they are related by the relation. 

1222 =++ nml  

Now, taking l and m as independent and differentiating with respect to l and m, we get 

022

022

=
¶
¶

+

=
¶
¶

+

m
n

nm

l
n

nl
                                                             (3.12) 

Now differentiating PQe  with respect to l and m for an extremum, we get 

( )zzyzxzxxyx nml
l
n

nml egggge 220 ++
¶
¶

+++=  

( )zzyzxyzxyy nml
m
n

nlm egggge 220 ++
¶
¶

+++=  

Substituting for 
l
n
¶
¶

 and 
m
n
¶
¶

 from Equation 3.12, we get 

n

nml

l

nml zzyzxzxxyx egggge 22 ++
=

++
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n

nml

m

nlm zzyzxyzxyy egggge 22 ++
=

++
 

Denoting the right hand expression in the above two equations by e2 , 

022

022

022

and =-++

=-++

=-++

nnml

mnml

lnml

zzyzx

yzyxy

xzxyx

eegg

egeg

egge

             (3.12a) 

Using equation (3.12a), we can obtain the values of l, m and n which determine the direction 

along which the relative extension is an extremum. Now, multiplying the first Equation by l, 
the second by m and the third by n, and adding them,  

We get  

( ) ( )222222 22 nmlnlmnlmnml zxyzxyzyx ++=+++++ egggeee             (3.12b)   

Here nlmnlmnml zxyzxyzyxPQ gggeeee +++++= 222  

1222 =++ nml  

Hence Equation (3.12b) can be written as 

ee =PQ  

which means that in Equation (3.12a), the values of  l, m and n determine the direction along 
which the relative extension is an extremum and also, the value of e  is equal to this 
extremum. Hence Equation (3.12a) can be written as 

( )

( )

( ) 0
2
1

2
1

0
2
1

2
1

0
2
1

2
1

=-++

=+-+

=++-

nml

nml

nml

zzyzx

yzyyx

xzxyx

eegg

geeg

ggee

             (3.12c) 

Denoting, 

,
2
1

xyxy eg =  ,
2
1

yzyz eg = zxzx eg =
2
1

 then 

Equation (3.12c) can be written as  
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( )
( ) 0

0

0)(

=-++

=+-+

=++-

nml

nml

nm

zzyzx

yzyyx

xzxyx

eeee

eeee

eeee

             (3.12d) 

The above set of equations is homogenous in l, m and n. In order to obtain a nontrivial 
solution of the directions l, m and n from Equation (3.12d), the determinant of the  
co-efficients should be zero. 

i.e.,  

( )
( )

( )eeee
eeee
eeee

-
-

-

zzyzx

yzyyx

xzxyx

 = 0 

Expanding the determinant of the co-efficients, we get 
032

2
1

3 =-+- JJJ eee               (3.12e) 

where  

zyxJ eee ++=1  

xxz

zxz

zzy

yzy

yyx

xyxJ
ee
ee

ee
ee

ee
ee

++=2  

zzyzx

yzyyx

xzxyx

J

eee
eee
eee

=3  

We can also write as  

( )

( )222
3

222
2

1

4
1

4
1

xyzzxyzxzxyzxyzyx

zxyzxyxzzyyx

zyx

J

J

J

gegegegggeee

gggeeeeee

eee

---+=

++-++=

++=

 

Hence the three roots 21,ee and 3e  of the cubic Equation (3.12e) are known as the 

principal strains and J1, J2 and J3 are termed as first invariant, second invariant and third 

invariant of strains, respectively. 

Invariants of Strain Tensor 

These are easily found out by utilizing the perfect correspondence of the components of 

strain tensor eij with those of the stress tensor tij.  The three invariants of the strain are: 
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J1 = ex + ey + ez                           (3.13) 

J2 = ex ey+ ey ez+ezex –
4
1 ( )222

zxyzxy ggg ++                         (3.14) 

J3 = ex ey ez + 
4
1

 ( )222
xyzzxyyzxzxyzxy gegegeggg ---                                                  (3.15) 

 
3.1.10    OCTAHEDRAL STRAINS  

The strains acting on a plane which is equally inclined to the three co-ordinate axes are 

known as octahedral strains.  The direction cosines of the normal to the octahedral plane are, 

.
3

1
,

3

1
,

3

1
 

The normal octahedral strain is: 
(en)oct =  e1 l2 + e2 m2 + e3 n2                                   

 \ (en)oct =
3
1

 (e1 + e2 + e3)                              (3.16) 

Resultant octahedral strain = (eR)oct = ( ) ( ) ( )23
2

2
2

1 nml eee ++                     

                                                          = ( )2
3

2
2

2
13

1
eee ++                       (3.17) 

Octahedral shear strain = goct = 2
13

2
32

2
21 )()()(

3
2 eeeeee -+-+-                      (3.18) 

 


